Tinjauan terhadap Alternatif Sistem Pengolahan Senyawa Aktif Farmasi pada Limbah Cair Medis
Abstract
Hospital wastewater contains various substances that are used for medical, laboratory, research purposes, feces from patients, and also including pharmaceutically active compounds (PhACs). Environmental problems can arise due to the presence of PhAC in water bodies. The active pharmaceutical compounds themselves were originally designed to affect humans and animals physiologically even at low concentrations. These compounds remain in the environment for a long time and are not degraded biologically or naturally. Therefore, to design an WWTP system in hospitals that is able to treat medical liquid waste, research on PhACs is very much needed. This study aims to identify the pollutants contained in hospital wastewater effluent and to review the WWTP system that is able to process hospital wastewater effluent efficiently. Data on non-domestic liquid waste treatment processes were obtained based on research conducted by researchers, so this research was conducted based on literature studies. Indonesia does not yet have regulations governing PhACs in liquid waste, so hospitals in Indonesia have not been able to treat liquid waste that is free of PhACs. Variants of PhACs found in hospital wastewater are very diverse, and this makes it quite difficult to determine an efficient method to degrade PhACs levels in water. However, ozone-based AOPs have been widely used in the field of air remediation because of their low maintenance time, low cost, and high degradation efficiency.
Full text article
References
Ajo, P., Preis, S., Vornamo, T., Mänttäri, M., Kallioinen, M., & Louhi-Kultanen, M. (2018). Hospital wastewater treatment with pilot-scale pulsed corona discharge for removal of pharmaceutical residues. Journal of Environmental Chemical Engineering, 6(2), 1569–1577. https://doi.org/10.1016/j.jece.2018.02.007
Alalm, M. G., Tawfik, A., & Ookawara, S. (2015). Degradation of four pharmaceuticals by solar photo-Fenton process: Kinetics and costs estimation. Journal of Environmental Chemical Engineering, 3(1), 46–51. https://doi.org/10.1016/j.jece.2014.12.009
Alizadeh Fard, M., & Barkdoll, B. (2018). Effects of oxalate and persulfate addition to Electrofenton and Electrofenton-Fenton processes for oxidation of Ketoprofen: Determination of reactive species and mass balance analysis. Electrochimica Acta, 265, 209–220. https://doi.org/10.1016/j.electacta.2018.01.153
Alum, A., Yoon, Y., Westerhoff, P., & Abbaszadegan, M. (2004). Oxidation of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol and byproduct estrogenicity. Environmental Toxicology, 19(3), 257–264. https://doi.org/10.1002/tox.20018
An, T., Yang, H., Li, G., Song, W., Cooper, W. J., & Nie, X. (2010). Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Applied Catalysis B: Environmental, 94(3–4), 288–294. https://doi.org/10.1016/j.apcatb.2009.12.002
Andreozzi, R., Caprio, V., Marotta, R., & Radovnikovic, A. (2003). Ozonation and H2O2/UV treatment of clofibric acid in water: A kinetic investigation. Journal of Hazardous Materials, 103(3), 233–246. https://doi.org/10.1016/j.jhazmat.2003.07.001
Arfaeinia, H., Sharafi, K., Banafshehafshan, S., & Hashemi, S. E. (2016). Degradation and biodegradability enhancement of chloramphenicol and azithromycin in aqueous solution using heterogeneous catalytic ozonation in the presence of MGO nanocrystalin comparison with single ozonation. International Journal of Pharmacy and Technology, 8(1), 10931–10948.
Arfanis, M. K., Adamou, P., Moustakas, N. G., Triantis, T. M., Kontos, A. G., & Falaras, P. (2017). Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nanotubes. Chemical Engineering Journal, 310, 525–536. https://doi.org/10.1016/j.cej.2016.06.098
Back, J. O., Obholzer, T., Winkler, K., Jabornig, S., & Rupprich, M. (2018). Combining ultrafiltration and non-thermal plasma for low energy degradation of pharmaceuticals from conventionally treated wastewater. Journal of Environmental Chemical Engineering, 6(6), 7377–7385. https://doi.org/10.1016/j.jece.2018.07.047
Bae, S., Kim, D., & Lee, W. (2013). Degradation of diclofenac by pyrite catalyzed Fenton oxidation. Applied Catalysis B: Environmental, 134–135, 93–102. https://doi.org/10.1016/j.apcatb.2012.12.031
Banaschik, R., Jablonowski, H., Bednarski, P. J., & Kolb, J. F. (2018). Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water. Journal of Hazardous Materials, 342, 651–660. https://doi.org/10.1016/j.jhazmat.2017.08.058
Barbara Ambrosetti, Luigi Campanella, & Raffaella Palmisano. (2015). Degradation of Antibiotics in Aqueous Solution by Photocatalytic Process: Comparing the Efficiency in the Use of ZnO or TiO2. Journal of Environmental Science and Engineering A, 4(6), 273–281. https://doi.org/10.17265/2162-5298/2015.06.001
Bautitz, I. R., & Nogueira, R. F. P. (2007). Degradation of tetracycline by photo-Fenton process-Solar irradiation and matrix effects. Journal of Photochemistry and Photobiology A: Chemistry, 187(1), 33–39. https://doi.org/10.1016/j.jphotochem.2006.09.009
Behera, S. K., Kim, H. W., Oh, J. E., & Park, H. S. (2011). Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Science of the Total Environment, 409(20), 4351–4360. https://doi.org/10.1016/j.scitotenv.2011.07.015
Belver, C., Bedia, J., & Rodriguez, J. J. (2017). Zr-doped TiO 2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. Journal of Hazardous Materials, 322, 233–242. https://doi.org/10.1016/j.jhazmat.2016.02.028
Ben Fredj, S., Novakoski, R. T., & Tizaoui, C. (2017). Two-Phase Ozonation for the Removal of Estrone, 17β-Estradiol and 17α-Ethinylestradiol in Water Using Ozone-Loaded Decamethylcyclopentasiloxane. Journal of Small Business and Enterprise Development, 92–105. http://dx.doi.org/10.1108/JSBED-07-2018-0215
Benner, J., & Ternes, T. (2009). Ozonation of propranolol: formation of oxidation products. Water Research, 42(12), 3003–3012. https://doi.org/10.1016/j.watres.2008.04.002
Bhatia, V., Malekshoar, G., Dhir, A., & Ray, A. K. (2017). Journal of Photochemistry and Photobiology A : Chemistry Enhanced photocatalytic degradation of atenolol using graphene TiO 2 composite. “Journal of Photochemistry & Photobiology, A: Chemistry,” 332, 182–187. https://doi.org/10.1016/j.jphotochem.2016.08.029
Bohdziewicz, J., Kudlek, E., & Dudziak, M. (2016). Influence of the catalyst type (TiO2 and ZnO) on the photocatalytic oxidation of pharmaceuticals in the aquatic environment. Desalination and Water Treatment, 57(3), 1552–1563. https://doi.org/10.1080/19443994.2014.988411
Brillas, E., Sirés, I., Arias, C., Cabot, P. L., Centellas, F., Rodríguez, R. M., & Garrido, J. A. (2005). Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. Chemosphere, 58(4), 399–406. https://doi.org/10.1016/j.chemosphere.2004.09.028
Brocenschi, R. F., Rocha-Filho, R. C., Bocchi, N., & Biaggio, S. R. (2016). Electrochemical degradation of estrone using a boron-doped diamond anode in a filter-press reactor. Electrochimica Acta, 197, 186–193. https://doi.org/10.1016/j.electacta.2015.09.170
Carbajo, J. B., Petre, A. L., Rosal, R., Herrera, S., Letón, P., García-Calvo, E., Fernández-Alba, A. R., & Perdigón-Melón, J. A. (2015). Continuous ozonation treatment of ofloxacin: Transformation products, water matrix effect and aquatic toxicity. Journal of Hazardous Materials, 292, 34–43. https://doi.org/10.1016/j.jhazmat.2015.02.075
Chen, M., Yao, J., Huang, Y., Gong, H., & Chu, W. (2018). Enhanced photocatalytic degradation of ciprofloxacin over Bi2O3/(BiO)2CO3 heterojunctions: Efficiency, kinetics, pathways, mechanisms and toxicity evaluation. Chemical Engineering Journal, 334, 453–461. https://doi.org/10.1016/j.cej.2017.10.064
Chen, W., Li, X., Pan, Z., Ma, S., & Li, L. (2017). Synthesis of MnOx/SBA-15 for Norfloxacin degradation by catalytic ozonation. Separation and Purification Technology, 173, 99–104. https://doi.org/10.1016/j.seppur.2016.09.030
Coria, G., Sirés, I., Brillas, E., & Nava, J. (2016). Influence of the anode material on the degradation of naproxen by Fenton-based electrochemical processes. Chemical Engineering Journal, 304. https://doi.org/10.1016/j.cej.2016.07.012
Czech, B., & Buda, W. (2015). Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites. Environmental Research, 137, 176–184. https://doi.org/10.1016/j.envres.2014.12.006
Czech, B., & Rubinowska, K. (2013). TiO2-assisted photocatalytic degradation of diclofenac, metoprolol, estrone and chloramphenicol as endocrine disruptors in water. Adsorption, 19(2–4), 619–630. https://doi.org/10.1007/s10450-013-9485-8
De Bel, E., Janssen, C., De Smet, S., Van Langenhove, H., & Dewulf, J. (2011). Sonolysis of ciprofloxacin in aqueous solution: Influence of operational parameters. Ultrasonics Sonochemistry, 18(1), 184–189. https://doi.org/10.1016/j.ultsonch.2010.05.003
de Luna, M. D. G., Veciana, M. L., Su, C.-C., & Lu, M.-C. (2012). Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell. Journal of Hazardous Materials, 217–218, 200–207. https://doi.org/10.1016/j.jhazmat.2012.03.018
De Zwart, D., & Posthuma, L. (2005). Complex mixture toxicity for single and multiple species: proposed methodologies. Environmental Toxicology and Chemistry, 24(10), 2665–2676. https://doi.org/10.1897/04-639r.1
Deng, J., Feng, S., Ma, X., Tan, C., Wang, H., Zhou, S., Zhang, T., & Li, J. (2016). Heterogeneous degradation of Orange II with peroxymonosulfate activated by ordered mesoporous MnFe2O4. Separation and Purification Technology, 167, 181–189. https://doi.org/10.1016/j.seppur.2016.04.035
DeWitte, B., Dewulf, J., Demeestere, K., Van De Vyvere, V., De Wispelaere, P., Van, & Langenhove, H. (2008). No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. قسم التقنيات الاحيائية - كلية العلوم- جامعة بغداد. بغداد ، الع ا رق, المجلد 49(المجلة الع ا رقية للعلوم), 69–73.
Dias, I. N., Souza, B. S., Pereira, J. H. O. S., Moreira, F. C., Dezotti, M., Boaventura, R. A. R., & Vilar, V. J. P. (2014). Enhancement of the photo-Fenton reaction at near neutral pH through the use of ferrioxalate complexes: A case study on trimethoprim and sulfamethoxazole antibiotics removal from aqueous solutions. Chemical Engineering Journal, 247, 302–313. https://doi.org/10.1016/j.cej.2014.03.020
Dirany, A., Sirés, I., Oturan, N., & Oturan, M. A. (2010). Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, 81(5), 594–602. https://doi.org/10.1016/j.chemosphere.2010.08.032
Do, Q. C., Kim, D. G., & Ko, S. O. (2019). Controlled formation of magnetic yolk-shell structures with enhanced catalytic activity for removal of acetaminophen in a heterogeneous fenton-like system. Environmental Research, 171(December 2018), 92–100. https://doi.org/10.1016/j.envres.2019.01.019
Domínguez, J. R., González, T., Palo, P., & Cuerda-Correa, E. M. (2012). Fenton + Fenton-like Integrated Process for Carbamazepine Degradation: Optimizing the System. Industrial & Engineering Chemistry Research, 51(6), 2531–2538. https://doi.org/10.1021/ie201980p
Domínguez, J. R., González, T., Palo, P., & Sánchez-Martín, J. (2010). Anodic oxidation of ketoprofen on boron-doped diamond (BDD) electrodes. Role of operative parameters. Chemical Engineering Journal, 162(3), 1012–1018. https://doi.org/10.1016/j.cej.2010.07.010
Dulova, N., Kattel, E., & Trapido, M. (2017). Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: The effect of citric acid addition. Chemical Engineering Journal, 318, 254–263. https://doi.org/10.1016/j.cej.2016.07.006
Emmanuel, J., Pieper, U., Rushbrook, P., Stringer, R., Townend, W., Wilburn, S., & Zghondi, R. (2001). Safe management of wastes from health care activities. Bulletin of the World Health Organization, 79(2), 171–171. https://doi.org/10.1590/S0042-96862001000200013
Escudero, C. J., Iglesias, O., Dominguez, S., Rivero, M. J., & Ortiz, I. (2017). Performance of electrochemical oxidation and photocatalysis in terms of kinetics and energy consumption. New insights into the p-cresol degradation. Journal of Environmental Management, 195, 117–124. https://doi.org/10.1016/j.jenvman.2016.04.049
Feng, L., Watts, M. J., Yeh, D., Esposito, G., & Van Hullebusch, E. D. (2015). The efficacy of ozone/bac treatment on non-steroidal anti-inflammatory drug removal from drinking water and surface water. Ozone: Science and Engineering, 37(4), 343–356. https://doi.org/10.1080/01919512.2014.999910
Feng, X., Ding, S., Tu, J., Wu, F., & Deng, N. (2005). Degradation of estrone in aqueous solution by photo-Fenton system. The Science of the Total Environment, 345(1–3), 229–237. https://doi.org/10.1016/j.scitotenv.2004.11.008
Feng, Y., Song, Q., Lv, W., & Liu, G. (2017). Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. Chemosphere, 189, 643–651. https://doi.org/10.1016/j.chemosphere.2017.09.109
Ferrari, B., Mons, R., Vollat, B., Fraysse, B., Paxéus, N., Lo Giudice, R., Pollio, A., & Garric, J. (2004). Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental Toxicology and Chemistry, 23(5), 1344–1354. https://doi.org/10.1897/03-246
Galvin, S., Boyle, F., Hickey, P., Vellinga, A., Morris, D., & Cormican, M. (2010). Enumeration and characterization of antimicrobial-resistant escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Applied and Environmental Microbiology, 76(14), 4772–4779. https://doi.org/10.1128/AEM.02898-09
Ganzenko, O., Oturan, N., Huguenot, D., Van Hullebusch, E. D., Esposito, G., & Oturan, M. A. (2015). Removal of psychoactive pharmaceutical caffeine from water by electro-Fenton process using BDD anode: Effects of operating parameters on removal efficiency. Separation and Purification Technology, 156, 987–995. https://doi.org/10.1016/j.seppur.2015.09.055
Gao, G., Shen, J., Chu, W., Chen, Z., & Yuan, L. (2017). Mechanism of enhanced diclofenac mineralization by catalytic ozonation over iron silicate-loaded pumice. Separation and Purification Technology, 173, 55–62. https://doi.org/10.1016/j.seppur.2016.09.016
García-Gómez, C., Drogui, P., Zaviska, F., Seyhi, B., Gortáres-Moroyoqui, P., Buelna, G., Neira-Sáenz, C., Estrada-Alvarado, M., & Ulloa-Mercado, R. G. (2014). Experimental design methodology applied to electrochemical oxidation of carbamazepine using Ti/PbO2 and Ti/BDD electrodes. Journal of Electroanalytical Chemistry, 732, 1–10. https://doi.org/10.1016/j.jelechem.2014.08.032
Gerrity, D., Gamage, S., Holady, J. C., Mawhinney, D. B., Quiñones, O., Trenholm, R. A., & Snyder, S. A. (2011). Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water Research, 45(5), 2155–2165. https://doi.org/10.1016/j.watres.2010.12.031
Gonçalves, A. G., Órfão, J. J. M., & Pereira, M. F. R. (2013). Ceria dispersed on carbon materials for the catalytic ozonation of sulfamethoxazole. Journal of Environmental Chemical Engineering, 1(3), 260–269. https://doi.org/10.1016/j.jece.2013.05.009
Gong, H., Chu, W., Lam, S. H., & Lin, A. Y.-C. (2017). Ibuprofen degradation and toxicity evolution during Fe(2+)/Oxone/UV process. Chemosphere, 167, 415–421. https://doi.org/10.1016/j.chemosphere.2016.10.027
González, O., Sans, C., & Esplugas, S. (2007). Sulfamethoxazole abatement by photo-Fenton toxicity, inhibition and biodegradability assessment of intermediates. Journal of Hazardous Materials, 146(3), 459–464. https://doi.org/10.1016/j.jhazmat.2007.04.055
González, T., Domínguez, J. R., Palo, P., Sánchez-Martín, J., & Cuerda-Correa, E. M. (2011). Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution. Desalination, 280(1–3), 197–202. https://doi.org/10.1016/j.desal.2011.07.012
Gottschalk, C., Saupe, A., & Ann Libra, J. (2010). Biological Wastewater Treatment Organic Pollutants in the Water Cycle Risk Analysis of Water Pollution Rapid Chemical and Biological Techniques for Water Monitoring Membranes in Clean Technologies : Theory and Practice , 2 Volume Set.
Guzel, E. Y., Cevik, F., & Daglioglu, N. (2019). Determination of pharmaceutical active compounds in Ceyhan River, Turkey: Seasonal, spatial variations and environmental risk assessment. Human and Ecological Risk Assessment: An International Journal, 25(8), 1980–1995. https://doi.org/10.1080/10807039.2018.1479631
He, S., Wang, J., Ye, L., Zhang, Y., & Yu, J. (2014). Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated fi lter. Radiation Physics and Chemistry, 105, 104–108. https://doi.org/10.1016/j.radphyschem.2014.05.019
He, Y., Dai, C., & Zhou, X. (2017). Magnetic cobalt ferrite composite as an efficient catalyst for photocatalytic oxidation of carbamazepine. Environmental Science and Pollution Research International, 24(2), 2065–2074. https://doi.org/10.1007/s11356-016-7978-1
Hocquet, D., Muller, A., & Bertrand, X. (2016). What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. Journal of Hospital Infection, 93(4), 395–402. https://doi.org/10.1016/j.jhin.2016.01.010
Hou, L., Wang, L., Royer, S., & Zhang, H. (2016). Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. Journal of Hazardous Materials, 302, 458–467. https://doi.org/10.1016/j.jhazmat.2015.09.033
Hu, R., Zhang, L., & Hu, J. (2016). Study on the kinetics and transformation products of salicylic acid in water via ozonation. Chemosphere, 153, 394–404. https://doi.org/10.1016/j.chemosphere.2016.03.074
Huber, M. M., Canonica, S., Park, G., & Gunten, U. R. S. V. O. N. (2003). Huber_2003_EST.pdf. 37(5), 1016–1024.
Ifelebuegu, A. O., & Ezenwa, C. P. (2011). Removal of endocrine disrupting chemicals in wastewater treatment by fenton-like oxidation. Water, Air, and Soil Pollution, 217(1–4), 213–220. https://doi.org/10.1007/s11270-010-0580-0
Indermuhle, C., Martín de Vidales, M. J., Sáez, C., Robles, J., Cañizares, P., García-Reyes, J. F., Molina-Díaz, A., Comninellis, C., & Rodrigo, M. A. (2013). Degradation of caffeine by conductive diamond electrochemical oxidation. Chemosphere, 93(9), 1720–1725. https://doi.org/10.1016/j.chemosphere.2013.05.047
Isarain-Chávez, E., Ponce, Jose Antonio Garrido Rodriguez, R. M., Arias, C., Cabot, P. L., & Brillas, E. (2011). Mineralization of Metoprolol by Electro-Fenton and Photoelectro-Fenton Mineralization of Metoprolol by Electro-Fenton and Photoelectro-Fenton Processes. The Journal of Physical Chemistry A 115(7):1234-42, June 2019, 1–2. https://doi.org/10.1021/jp110753r
Jankunaite, D., Tichonovas, M., Buivydiene, D., Radziuniene, I., Racys, V., & Krugly, E. (2017). Removal of Diclofenac, Ketoprofen, and Carbamazepine from Simulated Drinking Water by Advanced Oxidation in a Model Reactor. Water, Air, and Soil Pollution, 228(9). https://doi.org/10.1007/s11270-017-3517-z
K’oreje, K. O., Vergeynst, L., Ombaka, D., De Wispelaere, P., Okoth, M., Van Langenhove, H., & Demeestere, K. (2016). Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere, 149, 238–244. https://doi.org/10.1016/j.chemosphere.2016.01.095
Kalkhajeh, Y. K., Amiri, B. J., Huang, B., Khalyani, A. H., Hu, W., Gao, H., & Thompson, M. L. (2019). Methods for sample collection, storage, and analysis of freshwater phosphorus. Water (Switzerland), 11(9), 1–24. https://doi.org/10.3390/w11091889
Kanakaraju, D., Glass, B. D., & Oelgemöller, M. (2018). Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management, 219, 189–207. https://doi.org/10.1016/j.jenvman.2018.04.103
Kim, T. H., Kim, S. D., Kim, H. Y., Lim, S. J., Lee, M., & Yu, S. (2012). Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV. Journal of Hazardous Materials, 227–228, 237–242. https://doi.org/10.1016/j.jhazmat.2012.05.038
Klamerth, N., Rizzo, L., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. R. (2010). Degradation of fifteen emerging contaminants at microg L(-1) initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 44(2), 545–554. https://doi.org/10.1016/j.watres.2009.09.059
Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 35(2), 402–417. https://doi.org/10.1016/j.envint.2008.07.009
Komtchou, S., Dirany, A., Drogui, P., & Bermond, A. (2015). Removal of carbamazepine from spiked municipal wastewater using electro-Fenton process. Global Journal of Environmental Science and Management, 15(2), 213–224. https://doi.org/10.22034/gjesm.2019.02.07
Kwon, M., Yoon, Y., Cho, E., Jung, Y., Lee, B. C., Paeng, K. J., & Kang, J. W. (2012). Removal of iopromide and degradation characteristics in electron beam irradiation process. Journal of Hazardous Materials, 227–228, 126–134. https://doi.org/10.1016/j.jhazmat.2012.05.022
Länge, R., & Dietrich, D. (2002). Environmental risk assessment of pharmaceutical drug substances--conceptual considerations. Toxicology Letters, 131(1–2), 97–104. https://doi.org/10.1016/s0378-4274(02)00071-1
Li, H., Li, Y., Xiang, L., Huang, Q., Qiu, J., Zhang, H., Sivaiah, M. V., Baron, F., Barrault, J., Petit, S., & Valange, S. (2015). Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation. Journal of Hazardous Materials, 287, 32–41. https://doi.org/10.1016/j.jhazmat.2015.01.023
Li, M., Yang, X., Wang, D. S., & Yuan, J. (2017). Enhanced oxidation of erythromycin by persulfate activated iron powder–H2O2 system: Role of the surface Fe species and synergistic effect of hydroxyl and sulfate radicals. Chemical Engineering Journal, 317, 103–111. https://doi.org/10.1016/j.cej.2016.12.126
Li Puma, G., Puddu, V., Tsang, H., Gora, A., & Toepfer, B. (2010). Photocatalytic oxidation of multicomponent mixtures of estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2) and estriol (E3)) under UVA and UVC radiation: Photon absorption, quantum yields and rate constants independent of photon absorp. Applied Catalysis B-Environmental - APPL CATAL B-ENVIRON, 99, 388–397. https://doi.org/10.1016/j.apcatb.2010.05.015
Liang, S., Lin, H., Yan, X., & Huang, Q. (2018). Electro-oxidation of tetracycline by a Magnéli phase Ti4O7 porous anode: Kinetics, products, and toxicity. Chemical Engineering Journal, 332(May 2017), 628–636. https://doi.org/10.1016/j.cej.2017.09.109
Liu, C., Nanaboina, V., Korshin, G. V., & Jiang, W. (2012). Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater. Water Research, 46(16), 5235–5246. https://doi.org/10.1016/j.watres.2012.07.005
Liu, M., Hou, L., Li, Q., Xiaojun, H., & Yu, S. (2016). Heterogeneous degradation of tetracycline by magnetic Ag/AgCl/modified zeolite x_persulfate system under visible light. RSC Advances, 6, 35216–35227.
Liu, Q., Zhou, Y., Chen, L., & Zheng, X. (2010). Application of MBR for hospital wastewater treatment in China. Desalination, 250(2), 605–608. https://doi.org/10.1016/j.desal.2009.09.033
Liu, S., Zhao, X., Sun, H., Li, R., Fang, Y., & Huang, Y.-P. (2013). The degradation of tetracycline in a photo-electro-Fenton system. Chemical Engineering Journal, 231, 441–448. https://doi.org/10.1016/j.cej.2013.07.057
Liu, Z., Yang, S., Yuan, Y., Xu, J., Zhu, Y., Li, J., & Wu, F. (2017). A novel heterogeneous system for sulfate radical generation through sulfite activation on a CoFe2O4 nanocatalyst surface. Journal of Hazardous Materials, 324, 583–592. https://doi.org/10.1016/j.jhazmat.2016.11.029
Lu, X., Shao, Y., Gao, N., Chen, J., Zhang, Y., Xiang, H., & Guo, Y. (2017). Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments. Ecotoxicology and Environmental Safety, 141(March), 139–147. https://doi.org/10.1016/j.ecoenv.2017.03.022
Luiz, D. B., Genena, A. K., Virmond, E., José, H. J., Moreira, R. F. P. M., Gebhardt, W., & Schröder, H. F. (2010). Identification of Degradation Products of Erythromycin A Arising from Ozone and Advanced Oxidation Process Treatment. Water Environment Research, 82(9), 797–805. https://doi.org/10.2175/106143010x12609736966928
Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S., & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065
Mahdi-Ahmed, M., & Chiron, S. (2014). Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater. Journal of Hazardous Materials, 265, 41–46. https://doi.org/10.1016/j.jhazmat.2013.11.034
Majumder, A., Gupta, B., & Gupta, A. K. (2019). Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. Environmental Research, 176(January), 108542. https://doi.org/10.1016/j.envres.2019.108542
Martín de Vidales, M. J., Sáez, C., Cañizares, P., & Rodrigo, M. A. (2012). Metoprolol abatement from wastewaters by electrochemical oxidation with boron doped diamond anodes. Journal of Chemical Technology & Biotechnology, 87(2), 225–231. https://doi.org/https://doi.org/10.1002/jctb.2701
Martínez, C., Vilariño, S., Fernández, M. I., Faria, J., Canle, M. L., & Santaballa, J. A. (2013). Mechanism of degradation of ketoprofen by heterogeneous photocatalysis in aqueous solution. Applied Catalysis B: Environmental, 142–143, 633–646. https://doi.org/10.1016/j.apcatb.2013.05.018
Mashayekh-Salehi, A., Moussavi, G., & Yaghmaeian, K. (2017). Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as an emerging water contaminant. Chemical Engineering Journal, 310, 157–169. https://doi.org/10.1016/j.cej.2016.10.096
Menapace, H. M., Diaz, N., & Weiss, S. (2008). Electrochemical treatment of pharmaceutical wastewater by combining anodic oxidation with ozonation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 43(8), 961–968. https://doi.org/10.1080/10934520801974558
Metcalf & Eddy. (2004). Wastewater Engineering: Treatment and Reuse (Book). In Chemical engineering (Issue 7, pp. 10–11).
Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118–131. https://doi.org/10.1016/j.watres.2018.03.042
Mohapatra, S., Huang, C. H., Mukherji, S., & Padhye, L. P. (2016). Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere, 159, 526–535. https://doi.org/10.1016/j.chemosphere.2016.06.047
Molinari, A., Sarti, E., Marchetti, N., & Pasti, L. (2017). Degradation of emerging concern contaminants in water by heterogeneous photocatalysis with Na4W10O32. B Environ, 17(9), 1198–1203.
Mondal, S. K., Saha, A. K., & Sinha, A. (2018). Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization. Journal of Cleaner Production, 171, 1203–1214. https://doi.org/10.1016/j.jclepro.2017.10.091
Moreira, F., Boaventura, R., Brillas, E., & Vilar, V. (2015). Degradation of trimethoprim antibiotic by UVA photoelectro-Fenton process mediated by Fe(III)–carboxylate complexes. Applied Catalysis B: Environmental, 162, 34–44. https://doi.org/10.1016/j.apcatb.2014.06.008
Moreira, F. C., Garcia-Segura, S., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2014). Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode. Applied Catalysis B: Environmental, 160–161(1), 492–505. https://doi.org/10.1016/j.apcatb.2014.05.052
Murillo-Sierra, J. C., Ruiz-Ruiz, E., Hinojosa-Reyes, L., Guzmán-Mar, J. L., Machuca-Martínez, F., & Hernández-Ramírez, A. (2018). Sulfamethoxazole mineralization by solar photo electro-Fenton process in a pilot plant. Catalysis Today, 313(November 2017), 175–181. https://doi.org/10.1016/j.cattod.2017.11.003
Murugananthan, M., Yoshihara, S., Rakuma, T., Uehara, N., & Shirakashi, T. (2007). Electrochemical degradation of 17β-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode. Electrochimica Acta, 52(9), 3242–3249. https://doi.org/10.1016/j.electacta.2006.09.073
Naddeo, V., Landi, M., Scannapieco, D., & Belgiorno, V. (2013). Sonochemical degradation of twenty-three emerging contaminants in urban wastewater. Desalination and Water Treatment, 51(34–36), 6601–6608. https://doi.org/10.1080/19443994.2013.769696
Naimi, I., & Bellakhal, N. (2012). Removal of 17β-Estradiol by Electro-Fenton Process. Materials Sciences and Applications, 03(12), 880–886. https://doi.org/10.4236/msa.2012.312128
Nasuhoglu, D., Rodayan, A., Berk, D., & Yargeau, V. (2012). Removal of the antibiotic levofloxacin (LEVO) in water by ozonation and TiO 2 photocatalysis. Chemical Engineering Journal, 189–190, 41–48. https://doi.org/10.1016/j.cej.2012.02.016
Ogata, F., Tominaga, H., Yabutani, H., & Kawasaki, N. (2011). Removal of estrogens from water using activated carbon and ozone. Journal of Oleo Science, 60(12), 609–611. https://doi.org/10.5650/jos.60.609
Oliveira, T. S., Murphy, M., Mendola, N., Wong, V., Carlson, D., & Waring, L. (2015). Characterization of Pharmaceuticals and Personal Care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS. Science of the Total Environment, 518–519, 459–478. https://doi.org/10.1016/j.scitotenv.2015.02.104
Paiva, V. A. B., Paniagua, C. E. S., Ricardo, I. A., Gonçalves, B. R., Martins, S. P., Daniel, D., Machado, A. E. H., & Trovó, A. G. (2018). Simultaneous degradation of pharmaceuticals by classic and modified photo-Fenton process. Journal of Environmental Chemical Engineering, 6(1), 1086–1092. https://doi.org/10.1016/j.jece.2018.01.013
Perez-Estrada, L., Maldonado, M., Gernjak, W., Agüera, A., Fernández-Alba, A., Martín, M. M., & Malato, S. (2005). Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale. Catalysis Today, 101, 219–226. https://doi.org/10.1016/j.cattod.2005.03.013
Pérez, G., Fernández-Alba, A. R., Urtiaga, A. M., & Ortiz, I. (2010). Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment. Water Research, 44(9), 2763–2772. https://doi.org/10.1016/j.watres.2010.02.017
Perez, T., Sirés, I., Brillas, E., & Nava, J. (2017). Solar photoelectro-Fenton flow plant modeling for the degradation of the antibiotic erythromycin in sulfate medium. Electrochimica Acta, 228. https://doi.org/10.1016/j.electacta.2017.01.047
Real, F. J., Benitez, F. J., Acero, J. L., Sagasti, J. J. P., & Casas, F. (2009). Kinetics of the Chemical Oxidation of the Pharmaceuticals Primidone, Ketoprofen, and Diatrizoate in Ultrapure and Natural Waters. Industrial & Engineering Chemistry Research, 48(7), 3380–3388. https://doi.org/10.1021/ie801762p
Rimoldi, L., Meroni, D., Falletta, E., Pifferi, V., Falciola, L., Cappelletti, G., & Ardizzone, S. (2017). Emerging pollutant mixture mineralization by TiO2 photocatalysts. The role of the water medium. Photochemical and Photobiological Sciences, 16(1), 60–66. https://doi.org/10.1039/c6pp00214e
Rivas, F. J., Gimeno, O., & Borallho, T. (2012). Aqueous pharmaceutical compounds removal by potassium monopersulfate. Uncatalyzed and catalyzed semicontinuous experiments. Chemical Engineering Journal, 192, 326–333. https://doi.org/10.1016/j.cej.2012.03.055
Rocha, R., Beati, A., Oliveira, J., & Lanza, M. (2009). Avaliação da degradação do diclofenaco sódico utilizando H2O2/fenton em reator eletroquímico. Química Nova, 32, 354–358. https://doi.org/10.1590/S0100-40422009000200016
Romero, V., González, O., Bayarri, B., Marco, P., Giménez, J., & Esplugas, S. (2015). Performance of different advanced oxidation technologies for the abatement of the beta-blocker metoprolol. Catalysis Today, 240(PA), 86–92. https://doi.org/10.1016/j.cattod.2014.03.060
Romero, V., González, Ó. C., Bayarri, B., Marco, P., Giménez, J., & Esplugas, S. (2016). Degradation of Metoprolol by photo-Fenton: Comparison of different photoreactors performance. Chemical Engineering Journal, 283, 639–648.
Saeid, S., Tolvanen, P., Kumar, N., Eränen, K., Peltonen, J., Peurla, M., Mikkola, J. P., Franz, A., & Salmi, T. (2018). Advanced oxidation process for the removal of ibuprofen from aqueous solution: A non-catalytic and catalytic ozonation study in a semi-batch reactor. Applied Catalysis B: Environmental, 230(January), 77–90. https://doi.org/10.1016/j.apcatb.2018.02.021
Shao, H. yang, Wu, M. hong, Deng, F., Xu, G., Liu, N., Li, X., & Tang, L. (2018). Electron beam irradiation induced degradation of antidepressant drug fluoxetine in water matrices. Chemosphere, 190, 184–190. https://doi.org/10.1016/j.chemosphere.2017.09.133
Sharma, V. K., Johnson, N., Cizmas, L., McDonald, T. J., & Kim, H. (2016). A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere, 150, 702–714. https://doi.org/10.1016/j.chemosphere.2015.12.084
Sirés, I., Oturan, N., & Oturan, M. A. (2010). Electrochemical degradation of beta-blockers. Studies on single and multicomponent synthetic aqueous solutions. Water Research, 44(10), 3109–3120. https://doi.org/10.1016/j.watres.2010.03.005
Skoumal, M., Rodríguez, R., Cabot, P., Centellas, F., Garrido Ponce, J. A., Arias, C., & Brillas, E. (2009). Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochimica Acta - ELECTROCHIM ACTA, 54, 2077–2085. https://doi.org/10.1016/j.electacta.2008.07.014
Šunta, U., Žitnik, M., Finocchiaro, N. C., Bulc, T. G., & Torkar, K. G. (2019). Faecal indicator bacteria and antibiotic-resistant β-lactamase producing Escherichia coli in blackwater: A pilot study. Arhiv Za Higijenu Rada i Toksikologiju, 70(2), 140–148. https://doi.org/10.2478/aiht-2019-70-3212
Tang, K., Ooi, G. T. H., Litty, K., Sundmark, K., Kaarsholm, K. M. S., Sund, C., Kragelund, C., Christensson, M., Bester, K., & Andersen, H. R. (2017). Removal of pharmaceuticals in conventionally treated wastewater by a polishing moving bed biofilm reactor (MBBR) with intermittent feeding. Bioresource Technology, 236, 77–86. https://doi.org/10.1016/j.biortech.2017.03.159
Tran, N. H., Reinhard, M., & Gin, K. Y. H. (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Research, 133, 182–207. https://doi.org/10.1016/j.watres.2017.12.029
Trovó, A. G., Nogueira, R. F. P., Agüera, A., Fernandez-Alba, A. R., Sirtori, C., & Malato, S. (2009). Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Research, 43(16), 3922–3931. https://doi.org/10.1016/j.watres.2009.04.006
Trovó, A. G., Silva, T. F. S., Gomes, O., Machado, A. E. H., Neto, W. B., Muller, P. S., & Daniel, D. (2013). Degradation of caffeine by photo-Fenton process: Optimization of treatment conditions using experimental design. Chemosphere, 90(2), 170–175. https://doi.org/10.1016/j.chemosphere.2012.06.022
Vel Leitner, N. K., Delouane, B., Legube, B., & Luck, F. (1999). Effects of catalysts during ozonation of salicylic acid, peptides and humic substances in aqueous solution. Ozone Sci. Eng, 21(December), 261–276.
Velichkova, F., Julcour-Lebigue, C., Koumanova, B., & Delmas, H. (2013). Heterogeneous Fenton oxidation of paracetamol using iron oxide (nano)particles. Journal of Environmental Chemical Engineering, 1, 1214–1222. https://doi.org/10.1016/j.jece.2013.09.011
Veloutsou, S., Bizani, E., & Fytianos, K. (2014). Photo-Fenton decomposition of β-blockers atenolol and metoprolol; study and optimization of system parameters and identification of intermediates. Chemosphere, 107, 180–186. https://doi.org/10.1016/j.chemosphere.2013.12.031
Verlicchi, P., Galletti, A., Petrovic, M., & BarcelÓ, D. (2010). Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. Journal of Hydrology, 389(3–4), 416–428. https://doi.org/10.1016/j.jhydrol.2010.06.005
Vogna, D., Marotta, R., Napolitano, A., Andreozzi, R., & D’Ischia, M. (2004). Advanced oxidation of the pharmaceutical drug diclofenac with UV/H 2O2 and ozone. Water Research, 38(2), 414–422. https://doi.org/10.1016/j.watres.2003.09.028
Wang, A., Zhang, Y., Zhong, H., Chen, Y., Tian, X., Li, D., & Li, J. (2018). Efficient mineralization of antibiotic ciprofloxacin in acid aqueous medium by a novel photoelectro-Fenton process using a microwave discharge electrodeless lamp irradiation. Journal of Hazardous Materials, 342, 364–374. https://doi.org/10.1016/j.jhazmat.2017.08.050
Wang, J., & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. Journal of Environmental Management, 182, 620–640. https://doi.org/10.1016/j.jenvman.2016.07.049
Wang, J., & Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334(November 2017), 1502–1517. https://doi.org/10.1016/j.cej.2017.11.059
Wang, S., & Wang, J. (2018). Trimethoprim degradation by Fenton and Fe(II)-activated persulfate processes. Chemosphere, 191, 97–105. https://doi.org/10.1016/j.chemosphere.2017.10.040
Wang, Y., Shen, C., Zhang, M., Zhang, B. T., & Yu, Y. G. (2016). The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: Influencing factors, reaction pathways and energy demand. Chemical Engineering Journal, 296, 79–89. https://doi.org/10.1016/j.cej.2016.03.093
Wilde, M. L., Montipó, S., & Martins, A. F. (2014). Degradation of β-blockers in hospital wastewater by means of ozonation and Fe2+/ozonation. Water Research, 48(1), 280–295. https://doi.org/10.1016/j.watres.2013.09.039
Xekoukoulotakis, N. P., Drosou, C., Brebou, C., Chatzisymeon, E., Hapeshi, E., Fatta-Kassinos, D., & Mantzavinos, D. (2011). Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices. Catalysis Today, 161(1), 163–168. https://doi.org/10.1016/j.cattod.2010.09.027
Yahya, M. S., Oturan, N., El Kacemi, K., El Karbane, M., Aravindakumar, C. T., & Oturan, M. A. (2014). Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: kinetics and oxidation products. Chemosphere, 117, 447–454. https://doi.org/10.1016/j.chemosphere.2014.08.016
Yang, Y., Ok, Y. S., Kim, K. H., Kwon, E. E., & Tsang, Y. F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment, 596–597, 303–320. https://doi.org/10.1016/j.scitotenv.2017.04.102
Yaping, Z., & Jiangyong, H. (2008). Photo-Fenton degradation of 17β-estradiol in presence of α-FeOOHR and H2O2. Applied Catalysis B: Environmental, 78(3–4), 250–258. https://doi.org/10.1016/j.apcatb.2007.09.026
Zenker, A., Rita, M., Prestinaci, F., Bottoni, P., & Carere, M. (2014). Bioaccumulation and biomagni fi cation potential of pharmaceuticals with a focus to the aquatic environment. Journal of Environmental Management, 133, 378–387. https://doi.org/10.1016/j.jenvman.2013.12.017
Zhang, R., Yang, Y., Huang, C.-H., Li, N., Liu, H., Zhao, L., & Sun, P. (2016). UV/H2O2 and UV/PDS Treatment of Trimethoprim and Sulfamethoxazole in Synthetic Human Urine: Transformation Products and Toxicity. Environmental Science & Technology, 50(5), 2573–2583. https://doi.org/10.1021/acs.est.5b05604
Zhu, Z., Lu, Z., Wang, D., Tang, X., Yan, Y., Shi, W., Wang, Y., Gao, N., Yao, X., & Dong, H. (2016). Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Applied Catalysis B: Environmental, 182, 115–122. https://doi.org/10.1016/j.apcatb.2015.09.029
Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.