Carbon Monoxide (CO) Analysis in Transportation on The South Ring Road

Endi Adriansyah (1) , Hariestya Viareco (2) , Brama Nalendra (3) , Rifqi Sufra (4) , Asih Suzana (5)
(1) Program Studi Teknik Lingkungan Fakultas Teknik Universitas Batanghari, Jambi, 36122, Indonesia,
(2) Program Studi Teknik Lingkungan Fakultas Teknik Universitas Jambi, Jambi, 36361, Indonesia,
(3) Program Studi Arsitektur, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sulthan Thaha Saifuddin, Jambi, 36361, Indonesia,
(4) Program Studi Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Sumatera (ITERA), Lampung Selatan, 35365, Indonesia,
(5) Program Studi Teknik Lingkungan, Fakultas Teknik, Universitas Batanghari, Jambi, 36122, Indonesia

Abstract

National highways are one of the sources of air pollution. Activities on the highway include organizational, transportation, commercial, and industrial sectors. These activities change air quality. Traffic density results in an increase in air pollution due to vehicle activity in densely populated areas. National roads tend to have traffic crust dominated by motorcycles, light vehicles and heavy vehicles that have the potential to increase carbon monoxide (CO) concentrations. The South Ring Road is one of the national roads in the province and city of Jambi. The number of vehicles passing on the road increases the CO value. The CO value is measured using a Carbon monoxide Meter CO Meter, measurements are carried out for three days, in the morning, afternoon and evening the highest CO value on Tuesday during the day is 8991 µg / Nm3, Thursday afternoon 8991 µg / Nm3 Saturday afternoon 8991 µg / Nm3 according to Indonesian government regulation number 22 of 2021 concerning the implementation of environmental protection and management. The CO is approaching the quality standard for the need for road widening, planting plants in the road median and planting trees on the crossroads, so that it can reduce air pollution on the crossroads.

Full text article

Generated from XML file

References

Adame, J. A., Puentedura, O., Gómez, L., Condorí, L., Carbajal, G., Barlasina, M. E., & Yela, M. (2021). Patterns and trends of ozone and carbon monoxide at Ushuaia (Argentina) observatory. Atmospheric Research, 255: 105551.

Bakibillah, A. S. M., Kamal, M. A. S., Tan, C. P., Hayakawa, T., & Imura, J. I. (2024). Optimal eco-driving scheme for reducing energy consumption and carbon emissions on curved roads. Heliyon, 10(1): e23586.

Campagnolo, D., Borghi, F., Fanti, G., Keller, M., Rovelli, S., Spinazzè, A., Cattaneo, A., & Cavallo, D. M. (2023). Factors affecting in-vehicle exposure to traffic-related air pollutants: A review. Atmospheric environment, 295: 119560.

Chen, K., Breitner, S., Wolf, K., Stafoggia, M., Sera, F., Vicedo-Cabrera, A. M., Guo, Y., Tong, S., Lavigne, E., Íñiguez, C., Forsberg, B., Åström, C., Ragettli, MS, Guo, YL, Chen, B., Li, S., Milojevic, A., Zanobetti, A., Schwartz, J., Bell, M.L., Gasparrini, & Schneider, A. (2021). Ambient carbon monoxide and daily mortality: a global time-series study in 337 cities. The Lancet Planetary Health, 5(4): e191-e199.

Damara, D. Y., Wardhana, I. W., & Sutrisno, E. (2017). Analisis dampak kualitas udara karbon monoksida (CO) di sekitar Jl. Pemuda akibat kegiatan car free day menggunakan program caline4 dan surfer (studi kasus: Kota Semarang). Jurnal Teknik Lingkungan, 6(1): 1-14.

Dey, S., & Dhal, G. C. (2020). Controlling carbon monoxide emissions from automobile vehicle exhaust using copper oxide catalysts in a catalytic converter. Materials Today Chemistry, 17: 100282.

Dzhambov, A. M., Dimitrova, V., Germanova, N., Burov, A., Brezov, D., Hlebarov, I., & Dimitrova, R. (2023). Joint associations and pathways from greenspace, traffic-related air pollution, and noise to poor self-rated general health: A population-based study in Sofia, Bulgaria. Environmental Research, 231: 116087.

Fadli, M., Herawati, P., Hadrah, Adriansyah, E., Sufra, R., & Syaiful, M. (2022). Analysis of Carbon Monoxide (CO) Quality Due to the Construction of the Miftahun Najah Islamic Boarding School. International Journal of Research in Vocational Studies (IJRVOCAS), 2(2): 36–40.

Fermi, M. I., Sasmita, A., Elystia, S., & Alfarobi, M. H. (2021). Analisis Dispersi Karbonmonoksida (CO) dari Transportasi di Jalan HR. Soebrantas Pekanbaru dengan Model Gaussian Line Source. Rekayasa Hijau: Jurnal Teknologi Ramah Lingkungan, 5(3): 218-227.

Gusrianti, D., & Tarigan, A. P. M. (2017). Analisis Sebaran Karbon Monoksida dari Sumber Transportasi dari Jalan Sisingamangaraja dengan Metode Finite Length Line Source Berbasis Sistem Informasi Geografis. Dampak, 14(1): 41-51.

Joshua, O. H., Asubiojo, O. I., Adebiyi, F. M., Oluwole, A. F., Fasuyan, A. S., & Lewis, G. A. (2023). Ambient air quality measurements along high-and low-density traffic routes in southwestern Nigeria. Aerosol Science and Engineering, 7(4): 427-440.

Kwon, D., Paul, K. C., Yu, Y., Zhang, K., Folle, A. D., Wu, J., Bronstein, J.M., & Ritz, B. (2024). Traffic-related air pollution and Parkinson's disease in central California. Environmental research, 240, 117434.

Li, B., Cao, R., He, H. D., Peng, Z. R., Qin, H., & Qin, Q. (2022). Three-dimensional diffusion patterns of traffic-related air pollutants on the roadside based on unmanned aerial vehicles monitoring. Building and Environment, 219: 109159.

López-de Abajo, L., Alberti, M. G., & Gálvez, J. C. (2024). Pollutant concentration prediction from traffic data analysis for concrete durability studies in Madrid Calle 30 urban tunnels. Tunnelling and Underground Space Technology, 144: 105477.

Maharani, S., & Aryanta, W. R. (2023). Dampak buruk polusi udara bagi kesehatan dan cara meminimalkan risikonya. Jurnal Ecocentrism, 3(2): 47-58

Payus, C. M., Thevan, A. V., & Sentian, J. (2019). Impact of school traffic on outdoor carbon monoxide levels. City and Environment Interactions, 4: 100032.

Ramadan, I., El Toukhy, M., Hussien, K. Z., Tosti, F., & Shaaban, I. G. (2022). Effect of road, environment, driver, and traffic characteristics on vehicle emissions in Egypt. International Journal of Civil Engineering, 20(11): 1261-1276.

Rizaldi, M. A., Azizah, R., Latif, M. T., Sulistyorini, L., & Salindra, B. P. (2022). Literature Review: Dampak Paparan Gas Karbon Monoksida Terhadap Kesehatan Masyarakat yang Rentan dan Berisiko Tinggi. Jurnal Kesehatan Lingkungan Indonesia, 21(3): 253-265.

Saputra, I. G. K. I., Sari, K. E., Utomo, D. M. (2020). Daya serap tutupan lahan terhadap emisi karbon di koridor jalan pelabuhan celukan bawang. Planning for Urban Region and Environment Journal (PURE), 9(1): 93-100.

Sartori, A., Tiberio, M., Gottardo, R., Del Balzo, G., Vermiglio, E., Raniero, D., & De Leo, D. (2024). Carbon monoxide related deaths: A Verona case series. When cooperation becomes compulsory. Legal Medicine, 67: 102375.

Setyo, G. A., & Handriyono, R. E. (2021). Analisis penyebaran gas Karbon monoksida (CO) dari sumber transportasi Di Jalan Tunjungan Surabaya. In Prosiding Seminar Nasional Sains dan Teknologi Terapan, 9(1): 360-369.

Sharmilaa, G., & Ilango, T. (2022). A review on influence of age of vehicle and vehicle traffic on air pollution dispersion. Materials Today: Proceedings, 60: 1629-1632.

Singh, A., Obaidat, M. S., Singh, S., Aggarwal, A., Kaur, K., Sadoun, B., Kumar, M., & Hsiao, K. F. (2022). A simulation model to reduce the fuel consumption through efficient road traffic modelling. Simulation Modelling Practice and Theory, 121: 102658.

Turmuzi, M., Suryati, I., Mashaly, E. T., & Batubara, F. (2018). Analysis of carbon monoxide (CO) with Delhi Finite Line Source (DFLS) in MT Haryono Street, Medan City. In IOP Conference Series: Materials Science and Engineering, 309(1): 012108. IOP Publishing.

Yang, Q., Shen, H., & Liang, Z. (2020). Analysis of particulate matter and carbon monoxide emission rates from vehicles in a Shanghai tunnel. Sustainable Cities and Society, 56: 102104.

Yulianti, S., Fitrianingsih, Y., & Jati, D.R. (2014). Analisis konsentrasi gas Karbon Monoksida (CO) pada ruas Jalan Gajah Mada Pontianak. Jurnal Teknologi Lingkungan Lahan Basah, 2(1): 1-10.

Zhai, C., Xu, Y., Li, K., Zhang, R., Peng, T., Zong, C., & Xu, H. (2023). Periodic intermittent cruise control: An innovative approach for reducing fuel consumption and exhaust emissions in road traffic systems. Process Safety and Environmental Protection, 177: 1197-1210.

Zhang, G., Chang, F., Jin, J., Yang, F., & Huang, H. (2024). Multi-objective deep reinforcement learning approach for adaptive traffic signal control system with concurrent optimization of safety, efficiency, and decarbonization at intersections. Accident Analysis & Prevention, 199: 107451.

Zhang, L., Chen, H., Li, S., & Liu, Y. (2023). How road network transformation may be associated with reduced carbon emissions: An exploratory analysis of 19 major Chinese cities. Sustainable Cities and Society, 95: 104575.

Zhang, L., Long, R., Li, W., & Wei, J. (2020). Potential for reducing carbon emissions from urban traffic based on the carbon emission satisfaction: Case study in Shanghai. Journal of Transport Geography, 85: 102733.

Authors

Endi Adriansyah
endi.adriansyah@unbari.ac.id (Primary Contact)
Hariestya Viareco
Brama Nalendra
Rifqi Sufra
Asih Suzana
Adriansyah, E., Viareco, H., Nalendra, B., Sufra, R., & Suzana, A. (2025). Carbon Monoxide (CO) Analysis in Transportation on The South Ring Road . Jurnal Teknik Lingkungan, 31(1), 19–25. https://doi.org/10.5614/j.tl.2025.31.1.3

Article Details

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.