Analysis of Seeding and Acclimatization of Indigenous Bacteria for Ethanol to Acetate Conversion from POME In An Anaerobic Process

Fikry Aulia Tirta (1) , Marisa Handajani (2) , Andri Gumilar (3)
(1) Environmental Engineering Bachelor Program, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia,
(2) Water and Wastewater Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia,
(3) Water and Wastewater Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Indonesia

Abstract

Indonesia's palm oil industry generates a large volume of Palm Oil Mill Effluent (POME), a wastewater with high organic content. POME has the potential to be anaerobically treated and converted into value-added products such as bioethanol and acetic acid. However, the success of this conversion heavily relies on the preparation of an effective microbial culture. This research aims to analyze the success of a seeding and staged acclimatization process to cultivate an indigenous bacterial culture capable of converting ethanol to acetate. The seeding process was conducted using a mixed culture of POME sludge and septic tank sludge , followed by a three-stage acclimatization with increasing ethanol substrate concentrations (35%, 70%, and 100% of the 1000 mg/L target). The success of the process was evaluated based on Chemical Oxygen Demand (COD) and Volatile Suspended Solids (VSS) parameters. The results showed that the seeding process successfully increased the VSS from 1.785 mg/L to 4.351 mg/L. The acclimatization process was also successful, indicated by high COD removal efficiencies of 92% in Stage 2 and 84% in Stage 3 , with a stable VSS concentration in the optimal range of 2.000-4.000 mg/L in the final stage. It is concluded that the seeding and staged acclimatization successfully developed a dense, active, and adapted indigenous microbial culture capable of degrading a substrate with an ethanol concentration of 1.000 mg/L.

Full text article

Generated from XML file

References

Anggamulia, I. (2020). Pengaruh Penambahan Konsentrasi Mikronutrien terhadap Pembentukan Etanol pada Pengolahan Limbah Cair Industri Kelapa Sawit. Bandung: Institut Teknologi Bandung.

Baek, G., Kim, J., & Lee, C. (2018). Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies, 11(1), 107.

Bertsch, J., & Müller, V. (2015). Bioenergetics of acetate and ethanol formation in the anoxic thermoacidophile Thermoanaerobacter kivui. Journal of Bacteriology.

Chen, Y., Mu, H., & Xiao, N. (2011). Effects of metal oxide nanoparticles (TiO₂, Al₂O₃, SiO₂, and ZnO) on waste activated sludge anaerobic digestion. Bioresource Technology.

Diender, M., et al. (2016). A Narrow pH Range Supports Butanol, Hexanol, and Octanol Production from Syngas in a Continuous Co-culture of Clostridium ljungdahlii and Clostridium kluyveri with In-Line Product Extraction. Frontiers in Microbiology.

Franke-Whittle, I. H., Walter, A., & Insam, H. (2014). An overview of the microbiology of anaerobic digestion and the role of the methanogenic archaea. In A. Wellinger, J. Murphy, & D. Baxter (Eds.), Biogas: Fundamentals and application (pp. 9–46). IEA Bioenergy.

Gossett, J. M. & Pavlostathis, S. G., (1985). Modeling and simulation of anaerobic biodegradation of particulate organic matter. Water Research, 19(11), 1325–1335.

Kida, K., Shigematsu, T., Kijima, J., Numaguchi, M., & Mochinaga, Y. (2001). Influence of heavy metals on the anaerobic sludge digestion. Journal of the Japan Society on Water Environment, 24(9), 565-571.

James, A. W., & Nachiappan, V. (2014). Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions. Bioresource Technology, 151, 100–105. https://doi.org/10.1016/J.BIORTECH.2013.10.054

Khan, S., Lu, F., Kashif, M., Shen, P., Khan, S., Lu, F., Kashif, M., & Shen, P. (2021). Multiple Effects of Different Nickel Concentrations on the Stability of Anaerobic Digestion of Molasses. Sustainability 2021, Vol. 13, 13(9). https://doi.org/10.3390/SU13094971

Khesali Aghtaei, H., Püttker, S., Maus, I., Heyer, R., Huang, L., Sczyrba, A., Reichl, U., & Benndorf, D. (2022). Adaptation of a microbial community to demand-oriented biological methanation. Biotechnology for Biofuels and Bioproducts 2022 15:1, 15(1), 125-. https://doi.org/10.1186/S13068-022-02207-W

Long, X., He, N., He, Y., Jiang, J., & Wu, T. (2017). Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier. Bioresource Technology, 241, 200–206. https://doi.org/10.1016/J.BIORTECH.2017.05.120

Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. International Journal of Environmental Research and Public Health, 15(10), 2224. https://doi.org/10.3390/ijerph15102224

Metcalf, L., Eddy, H. P., & Tchobanoglous, G. (2004). Wastewater energy: treatment and reuse. In McGraw-Hill. McGraw-Hill. https://books.google.com/books/about/Wastewater_Engineering.html?hl=id&id=U9OmPwAACAAJ

Muñoz-Duarte, L., Chakraborty, S., Grøn, L. V., Bambace, M. F., Catalano, J., & Philips, J. (2025). H2 Consumption by Various Acetogenic Bacteria Follows First-Order Kinetics up to H2 Saturation. Biotechnology and Bioengineering, 122(4), 804–816. https://doi.org/10.1002/BIT.28904;SUBPAGE:STRING:FULL

Padmono, D. (2007). Pengaruh akumulasi volatile fatty acid (VFA) terhadap proses produksi biogas dari limbah cair pabrik kelapa sawit. Jurnal Teknologi Lingkungan, 8(1), 29–35.

Puteri, T. W. (2016). Penentuan Pengaruh Logam Cu, Mn, dan Mg terhadap Pembentukan Etanol dalam Proses Anaerob dari Palm Oil Mill Effluent (POME) Menggunakan Metode Statistik Faktorial 2n. Institut Teknologi Bandung.

Pilarski, K., Pilarska, A. A., Pilarski, K., & Pilarska, A. A. (2025). Kinetics and Energy Yield in Anaerobic Digestion: Effects of Substrate Composition and Fundamental Operating Conditions. Energies 2025, Vol. 18, 18(23), 6262. https://doi.org/10.3390/EN18236262

Rabbani, M. S. (2024). Analisis Pembentukan Etanol dengan Penambahan Oksida Logam Fe2O3, NiO, dan CuO dari POME (Palm Oil Mill Effluent) Artifisial dalam Proses Anaerob: Vol. 3008/1024/. Institut Teknologi Bandung.

Revalin, F. A. (2024). Pengaruh Oksida Logam 〖MnO〗_2, NiO, dan MgO Terhadap Pembentukan Etanol dari Artifisial Palm Oil Mill Effluent (POME) dalam Proses Anaerob: Vol. 2994/1024/. Institut Teknologi Bandung.

Sperling, M. (2007) Biological Wastewater Treatment Series. Vol. 5: Activated Sludge and Aerobic Biofilm Reactors. IWA Publishing, London.

Syafila, M. (1997). Proses Anaerob dalam Pengolahan Buangan Industri: Bahan Pengajaran Rekayasa Proses Biologi. Bandung: Institut Teknologi Bandung.

James, A. W., & Nachiappan, V. (2014). Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions. Bioresource Technology, 151, 100–105. https://doi.org/10.1016/J.BIORTECH.2013.10.054

Khan, S., Lu, F., Kashif, M., Shen, P., Khan, S., Lu, F., Kashif, M., & Shen, P. (2021). Multiple Effects of Different Nickel Concentrations on the Stability of Anaerobic Digestion of Molasses. Sustainability 2021, Vol. 13, 13(9). https://doi.org/10.3390/SU13094971

Khesali Aghtaei, H., Püttker, S., Maus, I., Heyer, R., Huang, L., Sczyrba, A., Reichl, U., & Benndorf, D. (2022). Adaptation of a microbial community to demand-oriented biological methanation. Biotechnology for Biofuels and Bioproducts 2022 15:1, 15(1), 125-. https://doi.org/10.1186/S13068-022-02207-W

Long, X., He, N., He, Y., Jiang, J., & Wu, T. (2017). Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier. Bioresource Technology, 241, 200–206. https://doi.org/10.1016/J.BIORTECH.2017.05.120

Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. International Journal of Environmental Research and Public Health, 15(10), 2224. https://doi.org/10.3390/ijerph15102224

Metcalf, L., Eddy, H. P., & Tchobanoglous, G. (2004). Wastewater energy: treatment and reuse. In McGraw-Hill. McGraw-Hill. https://books.google.com/books/about/Wastewater_Engineering.html?hl=id&id=U9OmPwAACAAJ

Muñoz-Duarte, L., Chakraborty, S., Grøn, L. V., Bambace, M. F., Catalano, J., & Philips, J. (2025). H2 Consumption by Various Acetogenic Bacteria Follows First-Order Kinetics up to H2 Saturation. Biotechnology and Bioengineering, 122(4), 804–816. https://doi.org/10.1002/BIT.28904;SUBPAGE:STRING:FULL

Pilarski, K., Pilarska, A. A., Pilarski, K., & Pilarska, A. A. (2025). Kinetics and Energy Yield in Anaerobic Digestion: Effects of Substrate Composition and Fundamental Operating Conditions. Energies 2025, Vol. 18, 18(23), 6262. https://doi.org/10.3390/EN18236262

Xu, H., Wang, M., Hei, S., Qi, X., Zhang, X., Liang, P., Fu, W., Pan, B., & Huang, X. (2024). Neglected role of iron redox cycle in direct interspecies electron transfer in anaerobic methanogenesis: Inspired from biogeochemical processes. Water Research, 262. https://doi.org/10.1016/j.watres.2024.122125

Yao, L., Liang, F., Jin, J., Chowdari, B. V. R., Yang, J., & Wen, Z. (2020). Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via in-situ ZrO2 coating for high energy density lithium ion batteries. Chemical Engineering Journal, 389, 124403. https://doi.org/10.1016/J.CEJ.2020.124403

Zhang, J., Liu, H., Zhang, Y., Fu, B., Zhang, C., Cui, M. H., Wu, P., & Guan, Z. W. (2023). Metatranscriptomic insights into the microbial electrosynthesis of acetate by Fe2+/Ni2+ addition. World Journal of Microbiology & Biotechnology, 39(5). https://doi.org/10.1007/S11274-023-03554-Y

Authors

Fikry Aulia Tirta
kikigentan9@gmail.com (Primary Contact)
Marisa Handajani
Andri Gumilar
Tirta, F. A., Handajani, M., & Gumilar, A. (2025). Analysis of Seeding and Acclimatization of Indigenous Bacteria for Ethanol to Acetate Conversion from POME In An Anaerobic Process. Jurnal Teknik Lingkungan, 31(2), 71–89. https://doi.org/10.5614/j.tl.2025.31.2.7

Article Details

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)